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Abstract: Background

Accurately identifying SNPs from bacterial sequencing data is an essential requirement
for using genomics to track transmission and predict important phenotypes such as
antimicrobial resistance. However, most previous performance evaluations of SNP
calling have been restricted to eukaryotic (human) data. Additionally, bacterial SNP
calling requires choosing an appropriate reference genome to align reads to, which,
together with the bioinformatic pipeline, affects the accuracy and completeness of a set
of SNP calls obtained.

This study evaluates the performance of 41 SNP calling pipelines using simulated data
from 254 strains of 10 clinically common bacteria and real data from environmentally-
sourced and genomically diverse isolates within the genera Citrobacter, Enterobacter,
Escherichia and Klebsiella.

Results

We evaluated the performance of 41 SNP calling pipelines, aligning reads to genomes
of the same or a divergent strain. Irrespective of pipeline, a principal determinant of
reliable SNP calling was reference genome selection. Across multiple taxa, there was a
strong inverse relationship between pipeline sensitivity and precision, and the Mash
distance (a proxy for average nucleotide divergence) between reads and reference
genome. The effect was especially pronounced for diverse, recombinogenic, bacteria
such as Escherichia coli, but less dominant for clonal species such as Mycobacterium
tuberculosis.

Conclusions

The accuracy of SNP calling for a given species is compromised by increasing intra-
species diversity. When reads were aligned to the same genome from which they were
sequenced, among the highest performing pipelines was Novoalign/GATK. However,
across the full range of (divergent) genomes, among the consistently highest-
performing pipelines was Snippy.
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Abstract 16 

 17 

Background 18 

Accurately identifying SNPs from bacterial sequencing data is an essential requirement for 19 

using genomics to track transmission and predict important phenotypes such as antimicrobial 20 

resistance. However, most previous performance evaluations of SNP calling have been 21 

restricted to eukaryotic (human) data. Additionally, bacterial SNP calling requires choosing 22 

an appropriate reference genome to align reads to, which, together with the bioinformatic 23 

pipeline, affects the accuracy and completeness of a set of SNP calls obtained. 24 

This study evaluates the performance of 41 SNP calling pipelines using simulated data from 25 

254 strains of 10 clinically common bacteria and real data from environmentally-sourced and 26 

genomically diverse isolates within the genera Citrobacter, Enterobacter, Escherichia and 27 

Klebsiella. 28 

 29 

Results 30 

We evaluated the performance of 41 SNP calling pipelines, aligning reads to genomes of the 31 

same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable SNP 32 

calling was reference genome selection. Across multiple taxa, there was a strong inverse 33 

relationship between pipeline sensitivity and precision, and the Mash distance (a proxy for 34 
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average nucleotide divergence) between reads and reference genome. The effect was 35 

especially pronounced for diverse, recombinogenic, bacteria such as Escherichia coli, but less 36 

dominant for clonal species such as Mycobacterium tuberculosis. 37 

 38 

Conclusions 39 

The accuracy of SNP calling for a given species is compromised by increasing intra-species 40 

diversity. When reads were aligned to the same genome from which they were sequenced, 41 

among the highest performing pipelines was Novoalign/GATK. However, across the full 42 

range of (divergent) genomes, among the consistently highest-performing pipelines was 43 

Snippy. 44 

 45 

Introduction 46 

 47 

Accurately identifying single nucleotide polymorphism (SNPs) from bacterial DNA is 48 

essential for monitoring outbreaks (as in [1, 2]) and predicting phenotypes, such as 49 

antimicrobial resistance [3], although the pipeline selected for this task strongly impacts the 50 

outcome [4]. Current bacterial sequencing technologies generate short fragments of DNA 51 

sequence (‘reads’) from which the bacterial genome can be reconstructed. Reference-based 52 

mapping approaches use a known reference genome to guide this process, using a 53 

combination of an aligner, which identifies the location in the genome each read is likely to 54 

have arisen from, and a variant caller, which summarises the available information at each 55 

site to identify variants including SNPs and indels (see reviews for an overview of alignment 56 

[5, 6] and SNP calling [7] algorithms). This evaluation focuses only on SNP calling; we did 57 

not evaluate indel calling as this can require different algorithms (see review [8]). 58 

The output from different aligner/caller combinations is often poorly concordant. For 59 

example, up to 5% of SNPs are uniquely called by one of five different pipelines [9] with 60 

even lower agreement upon structural variants [10]. 61 

 62 

Although a mature field, systematic evaluations of variant calling pipelines are often limited 63 

to eukaryotic data, usually human [11-15] but also C. elegans [16] and dairy cattle [17] (see 64 

also review [18]). This is because truth sets of known variants, such as the Illumina Platinum 65 

Genomes [19], are relatively few in number and human-centred, being expensive to create 66 

and biased toward the methods that produced them [20]. As such, to date, bacterial SNP 67 
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calling evaluations are comparatively limited in scope (for example, comparing 4 aligners 68 

with 1 caller, mpileup [21], using Listeria monocytogenes [22]). 69 

 70 

Relatively few truth sets exist for bacteria and so the choice of pipeline for bacterial SNP 71 

calling is often informed by performance on human data. Many evaluations conclude in 72 

favour of the publicly-available BWA-mem [23] or commercial Novoalign 73 

(www.novocraft.com) as choices of aligner, and GATK [24, 25] or mpileup as variant callers, 74 

with recommendations for a default choice of pipeline, independent of specific analytic 75 

requirements, including Novoalign followed by GATK [26], and BWA-mem followed by 76 

either mpileup [14], GATK [12], or VarDict [11]. 77 

 78 

This study evaluates a range of SNP calling pipelines across multiple bacterial species, both 79 

when reads are sequenced from and aligned to the same genome, and when reads are aligned 80 

to a representative genome of that species. In order to cover a broad range of methodological 81 

approaches, we assessed the combination of 4 commonly used short read aligners (BWA-82 

mem [23], minimap2 [27], Novoalign and Stampy [28]) and 10 variant callers (16GT [29], 83 

Freebayes [30], GATK HaplotypeCaller [24, 25], LoFreq [31], mpileup [21], Platypus [32], 84 

SNVer [33], SNVSniffer [34], Strelka [35] and VarScan [36]), alongside Snippy 85 

(https://github.com/tseemann/snippy), a haploid core variant calling pipeline constituting a 86 

bespoke aligner/caller combination of BWA-mem, minimap2, and Freebayes. Reasons for 87 

excluding other programs are detailed in Supplementary Text 1. 88 

 89 

To evaluate each pipeline, we simulated 3 sets of 150bp and 3 sets of 300bp reads 90 

(characteristic of the Illumina NextSeq and MiSeq platforms, respectively) at 50-fold depth 91 

from 254 strains of 10 clinically common species (2 to 36 strains per species), each with fully 92 

sequenced (closed) core genomes: the Gram-positive Clostridioides difficile (formerly 93 

Clostridium difficile [37]), Listeria monocytogenes, Staphylococcus aureus, and 94 

Streptococcus pneumoniae (all Gram-positive), Escherichia coli, Klebsiella pneumoniae, 95 

Neisseria gonorrhoeae, Salmonella enterica, and Shigella dysenteriae (all Gram-negative), 96 

and Mycobacterium tuberculosis. For each strain, we evaluated all pipelines using two 97 

different genomes for alignment: one being the same genome from which the reads were 98 

simulated, and one being the NCBI ‘reference genome’, a high-quality (but essentially 99 

arbitrary) representative of that species, typically chosen on the basis of assembly and 100 

annotation quality, available experimental support, and/or wide recognition as a community 101 
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standard (such as C. difficile 630, the first sequenced strain for that species [38]). We added 102 

approximately 8000-25,000 SNPs in silico to each genome, equivalent to 5 SNPs per genic 103 

region, or 1 SNP per 60-120 bases. 104 

 105 

While simulation studies can offer useful insight, they can be sensitive to the specific details 106 

of the simulations. Therefore, we also evaluated performance on real data to verify our 107 

conclusions. We used 16 environmentally-sourced and genomically diverse Gram-negative 108 

species of the genera Citrobacter, Enterobacter, Escherichia and Klebsiella, along with two 109 

reference strains, from which closed hybrid de novo assemblies were previously generated 110 

using both Illumina (short) and ONT (long; Oxford Nanopore Technologies) reads [39].  111 

 112 

All pipelines aim to call variants with high specificity (i.e. high proportion of non-variant 113 

sites in the truth set correctly identified as the reference allele by the pipeline) and high 114 

sensitivity (i.e. high proportion of true SNPs found by the pipeline, a.k.a. recall). The optimal 115 

trade-off between these two properties may vary depending on the application. For example, 116 

in transmission inference, minimising false positive SNP calls (i.e. high specificity), is likely 117 

to be most important, whereas high sensitivity may be more important when identifying 118 

variants associated with antibiotic resistance. We therefore report detailed performance 119 

metrics for all pipelines, including recall/sensitivity, precision (a.k.a. positive predictive 120 

value, the proportion of SNPs identified that are true SNPs), and the F-score, the harmonic 121 

mean of precision and recall [40]. 122 

 123 

Results 124 

 125 

Evaluating SNP calling pipelines when the genome for alignment is also the source of the 126 

reads 127 

The performance of 41 SNP calling pipelines (Supplementary Table 1) was first evaluated 128 

using reads simulated from 254 closed bacterial genomes (Supplementary Table 2), as 129 

illustrated in Figure 1. In order to exclude biases introduced during other parts of the 130 

workflow, such as DNA library preparation and sequencing error, reads were simulated error-131 

free. There was negligible difference in performance when reads were simulated with 132 

sequencing errors (see Supplementary Text 1). 133 

 134 
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This dataset contains 62,484 VCFs (comprising 2 read lengths [150 and 300bp] * 3 replicates 135 

* 254 genomes * 41 pipelines). The number of reads simulated from each species and the 136 

performance statistics for each pipeline – the number of true positives (TP), false positives 137 

(FP) and false negatives (FN), precision, recall, F-score, and total number of errors (i.e. FP + 138 

FN) per million sequenced bases – are given in Supplementary Table 3, with the distribution 139 

of F-scores illustrated in Figure 2A. 140 

 141 

Median F-scores were over 0.99 for all but four aligner/callers with small interquartile ranges 142 

(approx. 0.005), although outliers were nevertheless notable (Figure 2A), suggesting that 143 

reference genome can affect performance of a given pipeline. 144 

 145 

Table 1 shows the top ranked pipelines averaged across all species’ genomes, based on 7 146 

different performance measures and on the sum of their ranks (which constitutes an ‘overall 147 

performance’ measure, lower values indicating higher overall performance). Supplementary 148 

Table 4 shows the sum of ranks for each pipeline per species, with several variant callers 149 

consistently found among the highest-performing (Freebayes and GATK) and lowest-150 

performing pipelines (16GT and SNVSniffer), irrespective of aligner. 151 

 152 

If considering performance across all species, Novoalign/GATK has the highest median F-153 

score (0.994), lowest sum of ranks (10), the lowest number of errors per million sequenced 154 

bases (0.944), and the largest absolute number of true positive calls (15,778) (Table 1). 155 

However, in this initial simulation, as the reads are error-free and the reference genome is the 156 

same as the source of the reads, many pipelines avoid false positive calls and report a perfect 157 

precision of 1. 158 

 159 

Evaluating SNP calling pipelines when the genome for alignment diverges from the source 160 

of the reads 161 

Due to the high genomic diversity of some bacterial species, the appropriate selection of 162 

reference genomes is non-trivial. To assess how pipeline performance is affected by 163 

divergence between the source and reference genomes, SNPs were re-called after mapping all 164 

reads to a single representative genome for that species (illustrated in Figure 1). To identify 165 

true variants, closed genomes were aligned against the representative genome using both 166 

nucmer [41] and Parsnp [42], with consensus calls identified within one-to-one alignment 167 

blocks (see Methods). Estimates of the distance between each genome and the representative 168 
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genome are given in Supplementary Table 2, with the genomic diversity of each species 169 

summarised in Supplementary Table 5. We quantified genomic distances using the Mash 170 

distance, which reflects the proportion of k-mers shared between a pair of genomes as a 171 

proxy for average nucleotide divergence [43]. The performance statistics for each pipeline are 172 

shown in Supplementary Table 6, with an associated ranked summary in Supplementary 173 

Table 7. 174 

In general, aligning reads from one strain to a divergent reference leads to a decrease in 175 

median F-score and increase in interquartile range of the F-score distribution, with pipeline 176 

performance more negatively affected by choice of aligner than caller (Figure 2B). 177 

 178 

Although across the full range of genomes, many pipelines show comparable performance 179 

(Figure 2B), there was a strong negative correlation between the Mash distance and F-score 180 

(Spearman’s rho = -0.72, p < 10-15; Figure 3A). The negative correlation between F-score and 181 

the total number of SNPs between the strain and representative genome, i.e. the set of strain-182 

specific in silico SNPs plus inter-strain SNPs, was slightly weaker (rho = -0.58, p < 10-15; 183 

Supplementary Figure 1). This overall reduction in performance with increased divergence 184 

was more strongly driven by reductions in recall (i.e., by an increased number of false 185 

negative calls) rather than precision as there was a particularly strong correlation between 186 

distance and recall (Spearman’s rho = -0.94, p < 10-15; Supplementary Figure 2). 187 

 188 

Three commonly used pipelines – BWA-mem/Freebayes, BWA-mem/GATK and 189 

Novoalign/GATK – were among the highest performers when the reference genome is also 190 

the source of the reads (Table 1 and Supplementary Table 4). However, when the reference 191 

diverges from the reads, then considering the two ‘overall performance’ measures across the 192 

set of 10 species, Snippy instead has both the lowest sum of ranks (20) and the highest 193 

median F-score (0.982), along with the lowest number of errors per million sequenced bases 194 

(2.6) (Table 1). 195 

 196 

Performance per species is shown in Table 2, alongside both the overall sum and range of 197 

these ranks per pipeline. Pipelines featuring Novoalign were, in general, consistently high-198 

performing across the majority of species (that is, having a lower sum of ranks), although 199 

were outperformed by Snippy, which had both strong and uniform performance across all 200 

species (Table 2). By contrast, pipelines with a larger range of ranks had more inconsistent 201 
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performance, such as minimap2/SNVer, which for example performed relatively strongly for 202 

N. gonorrhoeae but poorly for S. dysenteriae (Table 2). 203 

 204 

While, in general, the accuracy of SNP calling declined with increasing genetic distances, 205 

some pipelines were more stable than others (Figure 3B). If considering the median 206 

difference in F-score between SNP calls made using the same versus a representative 207 

genome, Snippy had smaller differences as the distance between genomes increased (Figure 208 

4). 209 

 210 

The highest ranked pipelines in Table 2 had small, but practically unimportant, differences in 211 

median F-score and so are arguably equivalently strong candidates for a ‘general purpose’ 212 

SNP calling solution. For instance, on the basis of F-score alone the performance of 213 

Novoalign/mpileup is negligibly different from BWA-mem/mpileup (Figure 5). However, 214 

when directly comparing pipelines, similarity of F-score distributions (see Figure 2B) can 215 

conceal larger differences in either precision or recall, categorised using the effect size 216 

estimator Cliff’s delta [44, 45]. Thus, certain pipelines may be preferred if the aim is to 217 

minimise false positive (e.g. for transmission analysis) or maximise true positive (e.g. to 218 

identify antimicrobial resistance loci) calls. For instance, although Snippy (the top ranked 219 

pipeline in Table 2) is negligibly different from Novoalign/mpileup (the third ranked 220 

pipeline) in terms of F-score and precision, the former is more sensitive (Figure 5). 221 

 222 

Comparable accuracy of SNP calling pipelines if using real rather than simulated 223 

sequencing data 224 

We used real sequencing data from a previous study comprising 16 environmentally-sourced 225 

Gram-negative isolates (all Enterobacteriaceae), derived from livestock farms, sewage, and 226 

rivers, and cultures of two reference strains (K. pneumoniae subsp. pneumoniae MGH 78578 227 

and E. coli CFT073), for which closed hybrid de novo assemblies were generated using both 228 

Illumina paired-end short reads and Nanopore long reads [46]. Source locations for each 229 

sample, species predictions and NCBI accession numbers are detailed in Supplementary 230 

Table 8. The performance statistics for each pipeline are shown in Supplementary Table 9, 231 

with an associated ranked summary in Supplementary Table 10. 232 

 233 

Lower performance was anticipated for all pipelines, particularly for Citrobacter and 234 

Enterobacter isolates, which had comparatively high Mash distances (> 0.08) between the 235 
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reads and the representative genome (Supplementary Table 8), far greater than those in the 236 

simulations (241 of the 254 simulated genomes had a Mash distance to the representative 237 

genome of < 0.04; Supplementary Table 2). Consistent with the simulations (Figure 3A), 238 

there was a strong negative correlation between Mash distance and the median F-score across 239 

all pipelines (Spearman’s rho = -0.83, p = 3.36x10-5; Figure 6A), after excluding one 240 

prominent outlier (E. coli isolate RHB11-C04; see Supplementary Table 8). 241 

 242 

Notably, the median precision of each pipeline, if calculated across the divergent set of 243 

simulated genomes, strongly correlated with the median precision calculated across the set of 244 

real genomes (Spearman’s rho = 0.83, p = 2.81x10-11; Figure 6B). While a weaker correlation 245 

was seen between simulated and real datasets on the basis of recall (Spearman’s rho = 0.41, p 246 

= 0.007), this is consistent with the high diversity of Enterobacteriaceae, and the accordingly 247 

greater number of false negative calls with increased divergence (Supplementary Figure 2). 248 

 249 

Overall, this suggests that the accuracy of a given pipeline on simulated data is a reasonable 250 

proxy for its performance on real data. While the poorer performing pipelines when using 251 

simulated data are similarly poorer performing when using real data, the top ranked pipelines 252 

differ, predominantly featuring BWA-mem, rather than Novoalign, as an aligner 253 

(Supplementary Table 10). In both cases, however, among the consistently highest 254 

performing pipelines is Snippy. 255 

 256 

Discussion 257 

 258 

Reference genome selection strongly affects SNP calling performance 259 

Here we have evaluated 41 SNP calling pipelines, the combination of 4 aligners with 10 260 

callers, plus one self-contained pipeline, Snippy, using reads simulated from 10 clinically 261 

relevant species. These reads were first aligned back to their source genome and SNPs called. 262 

As expected under these conditions, the majority of SNP calling pipelines showed high 263 

precision and sensitivity, although between-species variation was prominent. 264 

 265 

We next introduced a degree of divergence between the reference genome and the reads, 266 

analogous to having an accurate species-level classification of the reads but no specific 267 

knowledge of the strain. For the purposes of this study, we assumed that reference genome 268 

selection was essentially arbitrary, equivalent to a community standard representative 269 
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genome. Such a genome can differ significantly from the sequenced strain, which 270 

complicates SNP calling by introducing inter-specific variation between the sequenced reads 271 

and the reference. Importantly, all pipelines in this study are expected to perform well if 272 

evaluated with human data, i.e. when there is a negligible Mash distance between the reads 273 

and the reference. For example, the mean Mash distance between human assembly 274 

GRCh38.p12 and the 3 Ashkenazi assemblies of the Genome In A Bottle dataset (deep 275 

sequencing of a mother, father and son trio [47-49], available under ENA study accession 276 

PRJNA200694 and GenBank assembly accessions GCA_001549595.1, GCA_001549605.1, 277 

and GCA_001542345.1, respectively) is 0.001 (i.e., consistent with previous findings that the 278 

majority of the human genome has approximately 0.1% sequence divergence [50]). Notably, 279 

the highest performing pipeline when reads were aligned to the same genome from which 280 

they were simulated, Novoalign/GATK, was also that used by the Genome In A Bottle 281 

consortium to align human reads to the reference [47]. 282 

 283 

While tools initially benchmarked on human data, such as SNVSniffer [34], can in principle 284 

also be used on bacterial data, this study shows that in practice many perform poorly. For 285 

example, the representative C. difficile strain, 630, has a mosaic genome, approximately 11% 286 

of which comprises mobile genetic elements [38]. With the exception of reads simulated from 287 

C. difficile genomes which are erythromycin-sensitive derivatives of 630 (strains 630Derm 288 

and 630deltaerm; see [51]), aligning reads to 630 compromises accurate SNP calling, 289 

resulting in a lower median F-score across all pipelines (Figure 3A). We also observed 290 

similar decreases in F-score for more recombinogenic species such as N. gonorrhoeae, which 291 

has a phase-variable gene repertoire [52] and has been used to illustrate the ‘fuzzy species’ 292 

concept, that recombinogenic bacteria do not form clear and distinct isolate clusters as 293 

assayed by phylogenies of common housekeeping loci [53, 54]. By contrast, for clonal 294 

species, such as those within the M. tuberculosis complex [55], the choice of reference 295 

genome has negligible influence on the phylogenetic relationships inferred from SNP calls 296 

[56] and, indeed, minimal effect on F-score. 297 

 298 

In general, more diverse species have a broader range of Mash distances on Figure 2A 299 

(particularly notable for E. coli), as do those forming distinct phylogroups, such as the two 300 

clusters of L. monocytogenes, consistent with the division of this species into multiple 301 

primary genetic lineages [57-59]. 302 

 303 



10 
 

Therefore, one major finding of this study is that, irrespective of the core components within 304 

a SNP calling pipeline, the selection of reference genome has a critical effect on output, 305 

particularly for more recombinogenic species. This can to some extent be mitigated by using 306 

variant callers that are more robust to increased distances between the reads and the 307 

reference, such as Freebayes (employed by Snippy). 308 

 309 

A sub-optimal choice of reference genome has previously been shown to result in mapping 310 

errors, leading to biases in allelic proportions [60]. Heterologous reference genomes are in 311 

general sub-optimal for read mapping, even when there is strict correspondence between 312 

orthologous regions, with short reads particularly vulnerable to false positive alignments [61]. 313 

There is also an inverse relationship between true positive SNP calls and genetic distance, 314 

with a greater number of false positives when the reads diverge from the reference genome 315 

[22]. 316 

 317 

Study limitations 318 

The experimental design made several simplifying assumptions regarding pipeline usage. 319 

Most notably, when evaluating SNP calling when the reference genome diverges from the 320 

source of the reads, we needed to convert the coordinates of one genome to those of another, 321 

doing so by whole genome alignment. We took a similar approach to that used to evaluate 322 

Pilon, an all-in-one tool for correcting draft assemblies and variant calling [62], which made 323 

whole genome alignments of the M. tuberculosis F11 and H37Rv genomes and used the 324 

resulting set of inter-strain variants as a truth set for benchmarking (a method we also used 325 

when evaluating each pipeline on real data). While this approach assumes a high degree of 326 

contiguity for the whole genome alignment, there are nevertheless significant breaks in 327 

synteny between F11 and H37Rv, with two regions deemed particularly hypervariable, in 328 

which no variant could be confidently called [62]. For the strain-to-representative genome 329 

alignments in this study, we considered SNP calls only within one-to-one alignment blocks 330 

and cannot exclude the possibility that repetitive or highly mutable regions within these 331 

blocks have been misaligned. However, we did not seek to identify and exclude SNPs from 332 

these regions as, even if present, this would have a systematic negative effect on the 333 

performance of each pipeline. 334 

 335 

Furthermore, when aligning reads from one genome to a different genome, it is not possible 336 

to recover all possible SNPs introduced with respect to the former, as some will be found 337 
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only within genes unique to the original genome (of which there can be many, as bacterial 338 

species have considerable genomic diversity; see Supplementary Table 5). Nevertheless, 339 

there is a strong relationship between the total number of SNPs introduced in silico into one 340 

genome and the maximum number of SNPs it is possible to call should reads instead be 341 

aligned to a divergent genome (Supplementary Figure 3). In any case, this does not affect the 342 

evaluation metrics used for pipeline evaluation, such as F-score, as these are based on 343 

proportional relationships of true positive, false positive and false negative calls at variant 344 

sites. However, we did not count true negative calls (and thereby assess pipeline specificity) 345 

as these can only be made at reference sites, a far greater number of which do not exist when 346 

aligning between divergent genomes. 347 

 348 

While the programs chosen for this study are in common use and the findings generalisable, it 349 

is also important to note that they are a subset of the tools available (see Supplementary Text 350 

1). It is also increasingly common to construct more complex pipelines that call SNPs with 351 

one tool and structural variants with another (for example, in [63]). Here, our evaluation 352 

concerned only accurate SNP calling, irrespective of the presence of structural variants 353 

introduced by sub-optimal reference genome selection (that is, by aligning the reads to a 354 

divergent genome) and so does not test dedicated indel calling algorithms. Previous indel-355 

specific variant calling evaluations, using human data, have recommended Platypus [8] or, 356 

for calling large indels at low read depths, Pindel [64]. 357 

 358 

Many of the findings in this evaluation are also based on simulated error-free data for which 359 

there was no clear need for pre-processing quality control. While adaptor removal and 360 

quality-trimming reads are recommended precautionary steps prior to analysing non-361 

simulated data, previous studies differ as to whether pre-processing increases the accuracy of 362 

SNP calls [65], has minimal effect upon them [66], or whether benefits instead depend upon 363 

the aligner and reference genome used [22]. While more realistic datasets would be subject to 364 

sequencing error, we also expect this to be minimal: Illumina platforms have a per-base error 365 

rate < 0.01% [67]. Accordingly, when comparing pipelines taking either error-free or error-366 

containing reads as input, sequencing error had negligible effect on performance (see 367 

Supplementary Text 1). 368 

 369 

We have also assumed that given the small genome sizes of bacteria, a consistently high 370 

depth of coverage is expected in non-simulated datasets, and so have not evaluated pipeline 371 
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performance on this basis. In any case, a previous study found that with simulated NextSeq 372 

reads, variant calling sensitivity was largely unaffected by increases in coverage [40]. 373 

 374 

Recommendations for bacterial SNP calling 375 

Our results emphasise that one of the principal difficulties of alignment-based bacterial SNP 376 

calling is not pipeline selection per se but optimal reference genome selection (or, 377 

alternatively, its de novo creation, not discussed further). If assuming all input reads are from 378 

a single, unknown, origin, then in principle a reference genome could be predicted using a 379 

metagenomic classifier such as Centrifuge [68], Kaiju [69] or Kraken [70]. However, 380 

correctly identifying the source genome from even a set of single-origin reads is not 381 

necessarily simple with the performance of read classifiers depending in large part on the 382 

sequence database they query (such as, for instance, EMBL proGenomes [71] or NCBI 383 

RefSeq [72]), which can vary widely in scope, redundancy, and degree of curation (see 384 

performance evaluations [73, 74]). This is particularly evident among the Citrobacter 385 

samples in the real dataset, with 3 methods each making different predictions (Supplementary 386 

Table 8). Specialist classification tools such as Mykrobe [75] use customised, tightly curated, 387 

allele databases and perform highly for certain species (in this case, M. tuberculosis and S. 388 

aureus) although by definition do not have wider utility. An additional complication would 389 

also arise from taxonomic disputes such as, for example, Shigella spp. being essentially 390 

indistinct from E. coli [76]. 391 

 392 

One recommendation, which is quick and simple to apply, would be to test which of a set of 393 

candidate reference genomes is most suitable by estimating the distance between each 394 

genome and the reads. This can be accomplished using Mash [43], which creates ‘sketches’ 395 

of sequence sets (compressed representations of their k-mer distributions) and then estimates 396 

the Jaccard index (that is, the fraction of shared k-mers) between each pair of sequences. 397 

Mash distances are a proxy both for average nucleotide identity [43] and measures of genetic 398 

distance derived from the whole genome alignment of genome pairs (Supplementary Table 399 

2), correlating strongly with the total number of SNPs between the strain genome and the 400 

representative genome (Spearman’s rho = 0.97, p < 10-15), and to a reasonable degree with 401 

the proportion of bases unique to the strain genome (Spearman’s rho = 0.48, p < 10-15). More 402 

closely related genomes would have lower Mash distances and so be more suitable as 403 

reference genomes for SNP calling. Using a highly divergent genome (such as the 404 

representative Enterobacter genomes in the real dataset, each of which differs from the reads 405 
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by a Mash distance > 0.1; Supplementary Table 8) is analogous to variant calling in a highly 406 

polymorphic region, such as the human leukocyte antigen, which shows > 10% sequence 407 

divergence between haplotypes [50] (i.e., even for pipelines optimised for human data – the 408 

majority in this study – this would represent an anomalous use case). 409 

 410 

Prior to using Mash (or other sketch-based distance-estimators, such as Dashing [77] or 411 

FastANI [78]), broad-spectrum classification tools such as Kraken could be used to narrow 412 

down the scope of the search space to a set of fully-sequenced candidate genomes, i.e. those 413 

genomes of the taxonomic rank to which the highest proportion of reads could be assigned 414 

with confidence. 415 

 416 

In the future, reads from long-read sequencing platforms, such as Oxford Nanopore, are less 417 

likely to be ambiguously mapped within a genomic database and so in principle are simpler 418 

to classify (sequencing error rate notwithstanding), making it easier to select a suitable 419 

reference genome. However, long-read platforms can also, in principle if not yet routinely, 420 

generate complete de novo bacterial genomes [79] for downstream SNP calling, possibly 421 

removing the need to choose a reference entirely. Similarly, using a reference pan-genome 422 

instead of a singular representative genome could also maximise the number of SNP calls by 423 

reducing the number of genes not present in the reference [80]. 424 

 425 

If considering the overall performance of a pipeline as the sum of the 7 different ranks for the 426 

different metrics considered, then averaged across the full set of species’ genomes, the 427 

highest performing pipelines are, with simulated data, Snippy and those utilising Novoalign 428 

in conjunction with LoFreq or mpileup (Table 2), and with real data, Snippy and those 429 

utilising BWA-mem in conjunction with Strelka or mpileup (Supplementary Table 10). 430 

 431 

Some of the higher-performing tools apply error-correction models that also appear suited to 432 

bacterial datasets with high SNP density, despite their original primary use case being in 433 

different circumstances. For instance, SNVer (which in conjunction with BWA-mem, ranks 434 

second to Snippy for N. gonorrhoeae; see Table 2) implements a statistical model for calling 435 

SNPs from pooled DNA samples, where variant allele frequencies are not expected to be 436 

either 0, 0.5 or 1 [33]. SNP calling from heterogeneous bacterial populations with high 437 

mutation rates, in which only a proportion of cells may contain a given mutation, is also 438 

conceptually similar to somatic variant calling in human tumours, where considerable noise is 439 
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expected [60] (this is a recommended use case for Strelka, which performed highly on real 440 

data; Supplementary Table 10). 441 

 442 

Irrespective of pipeline employed, increasing Mash distances between the reads and the 443 

reference increases the number of false negative calls (Supplementary Figure 2). 444 

Nevertheless, Snippy, which employs Freebayes, is particularly robust to this, being among 445 

the most sensitive pipelines (Figure 5 and Supplementary Figure 4). Notably, Freebayes is 446 

haplotype-based, calling variants based on the literal sequence of reads aligned to a particular 447 

location, so avoiding the problem of one read having multiple possible alignments 448 

(increasingly likely with increasing genomic diversity) but only being assigned to one of 449 

them. However, as distance increases further, it is likely that reads will cease being 450 

misaligned (which would otherwise increase the number of false positive calls) but rather 451 

they will not be aligned at all, being too dissimilar to the reference genome. 452 

 453 

With an appropriate selection of reference genome, many of these higher-performing 454 

pipelines could be optimised to converge on similar results by tuning parameters and post-455 

processing VCFs with specific filtering criteria, another routine task for which there are many 456 

different choices of application [81-84]. In this respect, the results of this study should be 457 

interpreted as a range-finding exercise, drawing attention to those SNP calling pipelines 458 

which, under default conditions, are generally higher-performing and which may be most 459 

straightforwardly optimised to meet user requirements. 460 

 461 

Conclusions 462 

 463 

We have performed a comparison of SNP calling pipelines across both simulated and real 464 

data in multiple bacterial species, allowing us to benchmark their performance for this 465 

specific use. We find that all pipelines show extensive species-specific variation in 466 

performance, which has not been apparent from the majority of existing, human-centred, 467 

benchmarking studies. While aligning to a single representative genome is common practice 468 

in eukaryotic SNP calling, in bacteria the sequence of this genome may diverge considerably 469 

from the sequence of the reads. A critical factor affecting the accuracy of SNP calling is thus 470 

the selection of a reference genome for alignment. This is complicated by ambiguity as to the 471 

strain of origin for a given set of reads, which is perhaps inevitable for many recombinogenic 472 

species, a consequence of the absence (or impossibility) of a universal species concept for 473 
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bacteria. For many clinically common species, excepting M. tuberculosis, the use of standard 474 

‘representative’ reference genomes can compromise accurate SNP calling by disregarding 475 

genomic diversity. By first considering the Mash distance between the reads and a candidate 476 

set of reference genomes, a genome with minimal distance may be chosen that, in 477 

conjunction with one of the higher performing pipelines, can maximise the number of true 478 

variants called. 479 

  480 

Materials and Methods 481 

 482 

Simulating truth sets of SNPs for pipeline evaluation 483 

264 genomes, representing a range of strains from 10 bacterial species, and their associated 484 

annotations, were obtained from the NCBI Genome database [85] 485 

(https://www.ncbi.nlm.nih.gov/genome, accessed 16th August 2018), as detailed in 486 

Supplementary Table 2. One genome per species is considered to be a representative genome 487 

(criteria detailed at https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/, accessed 16th 488 

August 2018), indicated in Supplementary Table 2. Strains with incomplete genomes (that is, 489 

assembled only to the contig or scaffold level) or incomplete annotations (that is, with no 490 

associated GFF, necessary to obtain gene coordinates) were excluded, as were those with 491 

multiple available genomes (that is, the strain name was not unique). After applying these 492 

filters, all species were represented by approx. 30 complete genomes (28 C. difficile, 29 M. 493 

tuberculosis and 36 S. pneumoniae), with the exceptions of N. gonorrhoeae (n = 15) and S. 494 

dysenteriae (n = 2). For the 5 remaining species (E. coli, K. pneumoniae, L. monocytogenes, 495 

S. aureus and S. enterica), there are > 100 usable genomes each. As it was not 496 

computationally tractable to test every genome, we chose a subset of isolates based on 497 

stratified selection by population structure. We created all-against-all distance matrices using 498 

the ‘triangle’ component of Mash v2.1 [43], then constructed dendrograms (Supplementary 499 

Figures 5 to 9) from each matrix using the neighbour joining method, as implemented in 500 

MEGA v7.0.14 [86]. By manually reviewing the topology, 30 isolates were chosen per 501 

species to create a representative sample of its diversity. 502 

 503 

For each genome used in this study, we excluded, if present, any non-chromosomal (i.e. 504 

circular plasmid) sequence. A simulated version of each core genome, with exactly 5 505 

randomly generated SNPs per genic region, was created using Simulome v1.2 [87] with 506 

parameters --whole_genome=TRUE --snp=TRUE --num_snp=5. As the coordinates of some 507 
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genes overlap, not all genes will contain simulated SNPs. The number of SNPs introduced 508 

into each genome (from approximately 8000 to 25,000) and the median distance between 509 

SNPs (from approximately 60 to 120 bases) is detailed in Supplementary Table 2. 510 

 511 

The coordinates of each SNP inserted into a given genome are, by definition, genome- (that 512 

is, strain-) specific. As such, it is straightforward to evaluate pipeline performance when 513 

reads from one genome are aligned to the same reference. However, in order to evaluate 514 

pipeline performance when reads from one genome are aligned to the genome of a divergent 515 

strain (that is, the representative genome of that species), the coordinates of each strain’s 516 

genome need to be converted to representative genome coordinates. To do so, we made 517 

whole genome (core) alignments of the representative genome to both versions of the strain 518 

genome (one with and one without SNPs introduced in silico) using nucmer and dnadiff, 519 

components of MUMmer v4.0.0beta2 [41], with default parameters (illustrated in Figure 1). 520 

For one-to-one alignment blocks, differences between each pair of genomes were identified 521 

using MUMmer show-snps with parameters -Clr -x 1, with the tabular output of this program 522 

converted to VCF by the script MUMmerSNPs2VCF.py 523 

(https://github.com/liangjiaoxue/PythonNGSTools, accessed 16th August 2018). The two 524 

resulting VCFs contain the location of all SNPs relative to the representative genome (i.e. 525 

inclusive of those introduced in silico), and all inter-strain variants, respectively. We 526 

excluded from further analysis two strains with poor-quality strain-to-representative whole 527 

genome alignments, both calling < 10% of the strain-specific in silico SNPs (Supplementary 528 

Table 11). The proportion of in silico SNPs recovered by whole genome alignment is detailed 529 

in Supplementary Table 11 and is, in general, high: of the 254 whole genome alignments of 530 

non-representative to representative strains across the 10 species, 222 detect > 80% of the in 531 

silico SNPs and 83 detect > 90%. For the purposes of evaluating SNP calling pipelines when 532 

the reference genome differs from the reads, we are concerned only with calling the truth set 533 

of in silico SNPs and so discard inter-strain variants (see below). More formally, when using 534 

each pipeline to align reads to a divergent genome, we are assessing the concordance of its 535 

set of SNP calls with the set of nucmer calls. However, it is possible that for a given call, one 536 

or more of the pipelines are correct and nucmer is incorrect. To reduce this possibility, a 537 

parallel set of whole genome alignments were made using Parsnp v1.2 with default 538 

parameters [42], with the exported SNPs contrasted with the nucmer VCF. 539 

 540 
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Thus, when aligning to a divergent genome, the truth set of in silico SNPs (for which each 541 

pipeline is scored for true positives) are those calls independently identified by both nucmer 542 

and Parsnp. Similarly, the set of inter-strain positions are those calls made by one or both of 543 

nucmer and Parsnp. As we are not concerned with the correctness of these calls, the lack of 544 

agreement between the two tools is not considered further; rather, this establishes a set of 545 

ambiguous positions which are discarded when VCFs are parsed. 546 

 547 

Simulated SNP-containing genomes, sets of strain-to-representative genome SNP calls (made 548 

by both nucmer and Parsnp), and the final truth sets of SNPs are available in Supplementary 549 

Dataset 1 (hosted online via the Oxford Research Archive at 550 

http://dx.doi.org/10.5287/bodleian:AmNXrjYN8). 551 

 552 

Evaluating SNP calling pipelines using simulated data 553 

From each of 254 SNP-containing genomes, 3 sets of 150bp and 3 sets of 300bp paired-end 554 

were simulated using wgsim, a component of SAMtools v1.7 [21]. This requires an estimate 555 

of average insert size (the length of DNA between the adapter sequences), which in real data 556 

is often variable, being sensitive to the concentration of DNA used [88]. For read length x, we 557 

assumed an insert size of 2.2x, i.e. for 300bp reads, the insert size is 660bp (Illumina paired-558 

end reads typically have an insert longer than the combined length of both reads [89]). The 559 

number of reads simulated from each genome is detailed in Supplementary Table 3 and is 560 

equivalent to a mean 50-fold base-level coverage, i.e. (50 x genome length)/read length. 561 

 562 

Perfect (error-free) reads were simulated from each SNP-containing genome using wgsim 563 

parameters -e 0 -r 0 -R 0 -X 0 -A 0 (respectively, the sequencing error rate, mutation rate, 564 

fraction of indels, probability an indel is extended, and the fraction of ambiguous bases 565 

allowed). 566 

 567 

Each set of reads was then aligned both to the genome of the same strain and to the 568 

representative genome of that species (from which the strain will diverge), with SNPs called 569 

using 41 different SNP calling pipelines (10 callers each paired with 4 aligners, plus the self-570 

contained Snippy). The programs used, including version numbers and sources, are detailed 571 

in Supplementary Table 1, with associated command lines in Supplementary Text 1. All 572 

pipelines were run using a high-performance cluster employing the Open Grid Scheduler 573 

batch system on Scientific Linux 7. No formal assessment was made of pipeline run time or 574 
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memory usage. This was because given the number of simulations it was not tractable to 575 

benchmark run time using, for instance, a single core. The majority of programs in this study 576 

permit multithreading (all except the callers 16GT, GATK, Platypus, SNVer, and 577 

SNVSniffer) and so are in principle capable of running very rapidly. We did not seek to 578 

optimise each tool for any given species and so made only a minimum effort application of 579 

each pipeline, using default parameters and minimal VCF filtering (see below). This is so that 580 

we obtain the maximum possible number of true positives from each pipeline under 581 

reasonable use conditions. 582 

 583 

While each pipeline comprises one aligner and one caller, there are several ancillary steps 584 

common in all cases. After aligning reads to each reference genome, all BAM files were 585 

cleaned, sorted, had duplicate reads marked and were indexed using Picard Tools v2.17.11 586 

[90] CleanSam, SortSam, MarkDuplicates and BuildBamIndex, respectively. Each pipeline 587 

produces a VCF as its final output. As with a previous evaluation [26], all VCFs were 588 

regularised using the vcfallelicprimitives module of vcflib v1.0.0-rc2 589 

(https://github.com/ekg/vcflib), so that different representations of the same indel or complex 590 

variant were not counted separately (these variants can otherwise be presented correctly in 591 

multiple ways). This module splits adjacent SNPs into individual SNPs, left-aligns indels and 592 

regularizes the representation of complex variants. 593 

 594 

Different variant callers populate their output VCFs with different contextual information. 595 

Before evaluating the performance of each pipeline, all regularised VCFs were subject to 596 

minimal parsing to retain only high-confidence variants. This is because many tools record 597 

variant sites even if they have a low probability of variation, under the reasonable expectation 598 

of parsing. Some pipelines (notably Snippy) apply their own internal set of VCF filtering 599 

criteria, giving the user the option of a ‘raw’ or ‘filtered’ VCF; in such cases, we retain the 600 

filtered VCF as the default recommendation. Where possible, (additional) filter criteria were 601 

applied as previously used by, and empirically selected for, COMPASS (Complete Pathogen 602 

Sequencing Solution; https://github.com/oxfordmmm/CompassCompact), an analytic 603 

pipeline employing Stampy and mpileup for base calling non-repetitive core genome sites 604 

(outlined in Supplementary Text 1 with filter criteria described in [91] and broadly similar to 605 

those recommended by a previous study for maximising SNP validation rate [92]). No set of 606 

generic VCF hard filters can be uniformly applied because each caller quantifies different 607 

metrics (such as the number of forward and reverse reads supporting a given call) and/or 608 
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reports the outcome of a different set of statistical tests, making filtering suggestions on this 609 

basis. For instance, in particular circumstances, GATK suggests filtering on the basis of the 610 

fields ‘FS’, ‘MQRankSum’ and ‘ReadPosRankSum’, which are unique to it (detailed at 611 

https://software.broadinstitute.org/gatk/documentation/article.php?id=6925, accessed 2nd 612 

April 2019). Where the relevant information was included in the VCF, SNPs were required to 613 

have (a) a minimum Phred score of 20, (b) > 5 reads mapped at that position, (c) at least one 614 

read in each direction in support of the variant, and (d) >75% of reads supporting the 615 

alternative allele. These criteria were implemented with the ‘filter’ module of BCFtools v1.7 616 

[21] using parameters detailed in Supplementary Table 12. 617 

 618 

From these filtered VCFs, evaluation metrics were calculated as detailed below. 619 

 620 

Evaluating SNP calling pipelines using real sequencing data 621 

Parallel sets of 150 bp Illumina HiSeq 4000 paired-end short reads and ONT long reads were 622 

obtained from 16 environmentally-sourced samples from the REHAB project (‘the 623 

environmental REsistome: confluence of Human and Animal Biota in antibiotic resistance 624 

spread’; http://modmedmicro.nsms.ox.ac.uk/rehab/), as detailed in [46]: 4 Enterobacter spp., 625 

4 Klebsiella spp., 4 Citrobacter spp., and 4 Escherichia coli, with species identified using 626 

MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry, 627 

plus sub-cultures of stocks of two reference strains K. pneumoniae subsp. pneumoniae MGH 628 

78578 and E. coli CFT073. Additional predictions were made using both the protein- and 629 

nucleotide-level classification tools Kaiju v1.6.1 [69] and Kraken2 v2.0.7 [93], respectively. 630 

Kaiju was used with two databases, one broad and one deep, both created on 5th February 631 

2019: ‘P’ (http://kaiju.binf.ku.dk/database/kaiju_db_progenomes_2019-02-05.tgz; > 20 632 

million bacterial and archaeal genomes from the compact, manually curated, EMBL 633 

proGenomes [94], supplemented by approximately 10,000 viral genomes from NCBI RefSeq 634 

[95]) and ‘E’ (http://kaiju.binf.ku.dk/database/kaiju_db_nr_euk_2019-02-05.tgz; > 100 635 

million bacterial, archaeal, viral and fungal genomes from NCBI nr, alongside various 636 

microbial eukaryotic taxa). Kaiju was run with parameters -e 5 and -E 0.05 which, 637 

respectively, allow 5 mismatches per read and filter results on the basis of an E-value 638 

threshold of 0.05. The read classifications from both databases were integrated using the 639 

Kaiju ‘mergeOutputs’ module, which adjudicates based on the lowest taxonomic rank of each 640 

pair of classifications, provided they are within the same lineage, else re-classifies the read at 641 

the lowest common taxonomic rank ancestral to the two. Kraken2 was run with default 642 
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parameters using the MiniKraken2 v1 database 643 

(https://ccb.jhu.edu/software/kraken2/dl/minikraken2_v1_8GB.tgz, created 12th October 644 

2018), which was built from the complete set of NCBI RefSeq bacterial, archaeal and viral 645 

genomes. 646 

 647 

Hybrid assemblies were produced using methods detailed in [46] and briefly recapitulated 648 

here. Illumina reads were processed using COMPASS (see above). ONT reads were adapter-649 

trimmed using Porechop v0.2.2 (https://github.com/rrwick/Porechop) with default 650 

parameters, and then error-corrected and sub-sampled (preferentially selecting the longest 651 

reads) to 30-40x coverage using Canu v1.5 [96] with default parameters. Finally, Illumina-652 

ONT hybrid assemblies for each genome were generated using Unicycler v0.4.0 [39] with 653 

default parameters. The original study found high agreement between these assemblies and 654 

those produced using hybrid assembly with PacBio long reads rather than ONT, giving us 655 

high confidence in their robustness. 656 

 657 

In the simulated datasets, SNPs are introduced in silico into a genome, with reads containing 658 

these SNPs then simulated from it. With this dataset, however, there are no SNPs within each 659 

genome: we have only the short reads (that is, real output from an Illumina sequencer) and 660 

the genome assembled from them (with which there is an expectation of near-perfect read 661 

mapping). 662 

 663 

To evaluate pipeline performance when the reads are aligned to a divergent genome, 664 

reference genomes were selected as representative of the predicted species, with distances 665 

between the two calculated using Mash v2.1 [43] and spanning approximately equal intervals 666 

from 0.01 to 0.12 (representative genomes and Mash distances are detailed in Supplementary 667 

Table 8). The truth set of SNPs between the representative genome and each hybrid assembly 668 

was the intersection of nucmer and Parsnp calls, as above. 669 

 670 

Samples, source locations, MALDI ID scores and associated species predictions are detailed 671 

in Supplementary Table 8. Raw sequencing data and assemblies have been deposited with the 672 

NCBI under BioProject accession PRJNA42251 673 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA422511). 674 

 675 

Evaluation metrics 676 
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For each pipeline, we calculated the absolute number of true positive (TP; the variant is in the 677 

simulated genome and correctly called by the pipeline), false positive (FP; the pipeline calls a 678 

variant which is not in the simulated genome) and false negative SNP calls (FN; the variant is 679 

in the simulated genome but the pipeline does not call it). We did not calculate true negative 680 

calls for two reasons. Firstly, to do so requires a VCF containing calls for all sites, a function 681 

offered by some variant callers (such as mpileup) but not all. Secondly, when aligning reads 682 

to a divergent genome, a disproportionately large number of reference sites will be excluded, 683 

particularly in more diverse species (for example, gene numbers in N. gonorrhoeae differ by 684 

up to a third; see Supplementary Table 5). 685 

 686 

We then calculated the precision (positive predictive value) of each pipeline as TP/(TP+FP), 687 

recall (sensitivity) as TP/(TP+FN), miss rate as FN/(TP+FN), and total number of errors 688 

(FP+FN) per million sequenced bases. We did not calculate specificity as this depends on 689 

true negative calls. We also calculated the F-score (as in [40]), which considers precision and 690 

recall with equal weight: F = 2 * ((precision * recall) / (precision + recall)). The F-score 691 

evaluates each pipeline as a single value bounded between 0 and 1 (perfect precision and 692 

recall). We also ranked each pipeline based on each metric so that – for example – the 693 

pipeline with the highest F-score, and the pipeline with the lowest number of false positives, 694 

would be rank 1 in their respective distributions. As an additional ‘overall performance’ 695 

measure, we calculated the sum of ranks for the 7 core evaluation metrics (the absolute 696 

numbers of TP, FP and FN calls, and the proportion-based precision, recall, F-score, and total 697 

error rate per million sequenced bases). Pipelines with a lower sum of ranks would, in 698 

general, have higher overall performance. 699 

 700 

We note that when SNPs are called after aligning reads from one strain to that of a divergent 701 

strain, the SNP calling pipeline will call positions for both the truth set of strain-specific in 702 

silico SNPs and any inter-strain variants. To allow a comparable evaluation of pipelines in 703 

this circumstance, inter-strain calls (obtained using nucmer and Parsnp; see above) are 704 

discarded and not explicitly considered either true positive, false positive or false negative. 705 

While the set of true SNPs when aligning to a divergent strain will be smaller than that when 706 

aligned to the same strain (because all SNPs are simulated in genic regions but not all genes 707 

are shared between strains), this will not affect proportion-based evaluation metrics, such as 708 

F-score. 709 

 710 
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Effect size of differences in the F-score distribution between pipelines 711 

Differences between distributions are assessed by Mann Whitney U tests, with results 712 

interpreted using the non-parametric effect size estimator Cliff’s delta [44, 45], estimated at a 713 

confidence level of 95% using the R package effsize v0.7.1 [97]. Cliff’s delta employs the 714 

concept of dominance (which refers to the degree of overlap between distributions) and so is 715 

more robust when distributions are skewed. Estimates of delta are bound in the interval (-716 

1,1), with extreme values indicating a lack of overlap between groups (respectively, set 1 << 717 

set 2 and set 1 >> set 2). Distributions with |delta| < 0.147 are negligibly different, as in [98]. 718 

Conversely, distributions with |delta| >= 0.60 are considered to have large differences. 719 

 720 

Tables 721 

 722 

Table 1. Summary of pipeline performance across all species’ genomes. 723 

 724 

Table 2. Overall performance of each pipeline per species, calculated as the sum of seven 725 

ranks, when reads are aligned to a divergent genome. 726 

The seven performance measures for each pipeline (the absolute numbers of true positive, 727 

false positive and false negative calls, and the proportion-based precision, recall, F-score, and 728 

total error rate per million sequenced bases) are detailed in Supplementary Table 6, with 729 

associated ranks in Supplementary Table 7. 730 

 731 

Figures 732 

 733 

Figure 1. Overview of SNP calling evaluation. 734 

SNPs were introduced in silico into 254 closed bacterial genomes (Supplementary Table 2) 735 

using Simulome. Reads were then simulated from these genomes. 41 SNP calling pipelines 736 

(Supplementary Table 1) were evaluated using two different genomes for read alignment: the 737 

original genome from which the reads were simulated and a divergent genome, the species-738 

representative NCBI ‘reference genome’. In the latter case, it will not be possible to recover 739 

all of the original in silico SNPs as some will be found only within genes unique to the 740 

original genome. Accordingly, to evaluate SNP calls, the coordinates of the original genome 741 

need to be converted to those of the representative genome. To do so, whole genome 742 

alignments were made using both nucmer and Parsnp, with consensus calls identified within 743 

one-to-one alignment blocks. Inter-strain SNPs (those not introduced in silico) are excluded. 744 
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The remaining subset of in silico calls comprise the truth set for evaluation. There is a strong 745 

correlation between the total number of SNPs introduced in silico into the original genome 746 

and the total number of nucmer/Parsnp consensus SNPs in the divergent genome 747 

(Supplementary Figure 3). 748 

 749 

Figure 2. Median F-score per pipeline when the reference genome for alignment is (A) 750 

the same as the source of the reads, and (B) a representative genome for that species. 751 

Panels show the median F-score of 41 different pipelines when SNPs are called using error-752 

free 150bp and 300bp reads simulated from 254 genomes (of 10 species) at 50-fold coverage. 753 

Pipelines are ordered according to median F-score and coloured according to either the 754 

variant caller (A) or aligner (B) in each pipeline. Note that because F-scores are uniformly > 755 

0.9 when the reference genome for alignment is the same as the source of the reads, the 756 

vertical axes on each panel have different scales. Genomes are detailed in Supplementary 757 

Table 2, summary statistics for each pipeline in Supplementary Tables 3 and 6, and 758 

performance ranks in Supplementary Tables 4 and 7, for alignments to the same or to a 759 

representative genome, respectively. 760 

 761 

Figure 3. Reduced performance of SNP calling pipelines with increasing genetic 762 

distance between the reads and the reference genome. 763 

Panel A shows that the median F-score across the complete set of 41 pipelines, per strain, 764 

decreases as the distance between the strain and the reference genome increases (assayed as 765 

the Mash distance, which is based on the proportion of k-mers shared between genomes). 766 

Each point indicates the median F-score, across all pipelines, for the genome of one strain per 767 

species (n = 254 strains). Points are coloured by the species of each strain (n = 10 species). 768 

Panel B shows the median F-score per pipeline per strain, with points coloured according to 769 

the variant caller in each pipeline. This shows that the performance of some SNP calling 770 

pipelines is more negatively affected by increasing distance from the reference genome. 771 

Summary statistics for each pipeline are shown in Supplementary Table 6, performance ranks 772 

in Supplementary Table 7 and the genetic distance between strains in Supplementary Table 2. 773 

Quantitatively similar results are seen if assaying distance as the total number of SNPs 774 

between the strain and representative genome, i.e. the set of strain-specific in silico SNPs 775 

plus inter-strain SNPs (Supplementary Figure 1). 776 

 777 
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Figure 4. Stability of pipeline performance, in terms of F-score, with increasing genetic 778 

distance between the reads and the reference genome. 779 

The performance of a SNP calling pipeline decreases with increasing distance between the 780 

genome from which reads are sequenced and the reference genome to which they are aligned. 781 

Each point shows the median difference in F-score for a pipeline that calls SNPs when the 782 

reference genome is the same as the source of the reads, and when it is instead a 783 

representative genome for that species. Points are coloured according to the variant caller in 784 

each pipeline, with those towards the top of the figure less affected by distance. Lines fitted 785 

using LOESS smoothing. 786 

 787 

Figure 5. Head-to-head performance comparison of three pipelines, on the basis of 788 

precision, recall and F-score. 789 

This figure directly compares the performance of three pipelines using simulated data: 790 

Snippy, Novoalign/mpileup and BWA/mpileup. Each point indicates the median F-score, 791 

precision or recall (columns 1 through 3, respectively), for the genome of one strain per 792 

species (n = 254 strains). Raw data for this figure is given in Supplementary Table 6. Text in 793 

the top left of each figure is an interpretation of the difference between each pair of 794 

distributions, obtained using the R package ‘effsize’ which applies the non-parametric effect 795 

size estimator Cliff’s delta to the results of a Mann Whitney U test. An expanded version of 796 

this figure, comparing 40 pipelines relative to Snippy, is given as Supplementary Figure 4. 797 

 798 

Figure 6. Similarity of performance for pipelines evaluated using both simulated and 799 

real sequencing data. 800 

Panel A shows that pipelines evaluated using real sequencing data show reduced performance 801 

with increasing Mash distances between the reads and the reference genome, similar to that 802 

observed with simulated data (see Figure 3A). Each point indicates the median F-score, 803 

across all pipelines, for the genome of an environmentally-sourced/reference isolate (detailed 804 

in Supplementary Table 8). Panel B shows that pipelines evaluated using real and simulated 805 

sequencing data have comparable accuracy. Each point shows the median precision of each 806 

of 41 pipelines, calculated across both a divergent set of 254 simulated genomes (2-36 strains 807 

from ten clinically common species) and 18 real genomes (isolates of Citrobacter, 808 

Enterobacter, Escherichia and Klebsiella). The outlier pipeline, with lowest precision on both 809 

real and simulated data, is Stampy/Freebayes. Raw data for this figure are available in 810 

Supplementary Tables 6 (simulated genomes) and 9 (real genomes). 811 
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 812 

Supplementary Tables 813 

 814 

Supplementary Table 1. Sources of software. 815 

 816 

Supplementary Table 2. Genomes into which SNPs were introduced in silico, and various 817 

measures of distance between each strain’s genome and the representative genome of that 818 

species. 819 

 820 

Supplementary Table 3. Summary statistics of SNP calling pipelines after aligning reads to 821 

the same reference genome as their origin. 822 

 823 

Supplementary Table 4. Ranked performance of SNP calling pipelines after aligning reads 824 

to the same reference genome as their origin. 825 

 826 

Supplementary Table 5. Genome size diversity within 5 clinically common bacterial 827 

species. 828 

 829 

Supplementary Table 6. Summary statistics of SNP calling pipelines after aligning reads to 830 

a reference genome differing from their origin. 831 

 832 

Supplementary Table 7. Ranked performance of SNP calling pipelines after aligning reads 833 

to reference genome differing from their origin. 834 

 835 

Supplementary Table 8. Environmentally-sourced/reference Gram-negative isolates and 836 

associated representative genomes. 837 

 838 

Supplementary Table 9. Summary statistics of SNP calling pipelines after aligning real 839 

reads to a reference genome differing from their origin. 840 

 841 

Supplementary Table 10. Ranked performance of SNP calling pipelines after aligning real 842 

reads to reference genome differing from their origin. 843 

 844 
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Supplementary Table 11. Proportion of strain-specific in silico SNPs detected in whole 845 

genome alignments between the strain genome and a representative genome. 846 

 847 

Supplementary Table 12. VCF filtering parameters, as used by BCFtools. 848 

 849 

Supplementary Table 13. Summary statistics of SNP calling pipelines after aligning both 850 

error-free and error-containing reads to the same reference genome as their origin. 851 

 852 

Supplementary Table 14. Summary statistics of SNP calling pipelines after aligning both 853 

error-free and error-containing reads to a reference genome differing from their origin. 854 

 855 

Supplementary Figures 856 

 857 

Supplementary Figure 1. Reduced performance of SNP calling pipelines with increasing 858 

genetic distance between the reads and the reference genome (assayed as total number 859 

of SNPs). 860 

The median F-score across a set of 41 pipelines, per strain, decreases as the distance between 861 

the strain and the reference genome increases (assayed as the total number of SNPs between 862 

the strain and representative genome, i.e. the set of strain-specific in silico SNPs plus inter-863 

strain SNPs). Each point indicates the genome of one strain per species (n = 254 strains). 864 

Points are coloured by the species of each strain (n = 10 species). Summary statistics for each 865 

pipeline are shown in Supplementary Table 6, performance ranks in Supplementary Table 7 866 

and the genetic distance between strains in Supplementary Table 2. Quantitatively similar 867 

results are seen if assaying distance as the Mash distance, which is based on the proportion of 868 

k-mers shared between genomes (Figure 3A). 869 

 870 

Supplementary Figure 2. Decreasing sensitivity (that is, an increased number of false 871 

negative calls) with increasing genetic distance between the reads and the reference 872 

genome (assayed as Mash distance). 873 

The median sensitivity (recall) across a set of 41 pipelines, per strain, increases as the 874 

distance between the strain and the reference genome increases (assayed as the Mash 875 

distance, which is based on the proportion of shared k-mers between genomes). Each point 876 

indicates the genome of one strain per species (n = 254 strains). Points are coloured by the 877 

species of each strain (n = 10 species). Summary statistics for each pipeline are shown in 878 
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Supplementary Table 6, performance ranks in Supplementary Table 7 and the genetic 879 

distance between strains in Supplementary Table 2. 880 

 881 

Supplementary Figure 3. Total number of SNPs it is possible to call should reads from 882 

one strain be aligned to a representative genome of that species. 883 

Strong correlation between the total number of SNPs introduced in silico into one genome 884 

and the maximum number of SNPs it is possible to call assuming reads from the former are 885 

aligned to a representative genome of that species (which will not necessarily contain the 886 

same complement of genes). Each point represents the genome of one strain, with genomes 887 

detailed in Supplementary Table 2. The line y = x is shown in red. 888 

  889 

Supplementary Figure 4. Head-to-head performance comparison of all pipelines relative 890 

to Snippy, on the basis of F-score. 891 

This figure directly compares the performance, using simulated data, of 40 pipelines relative 892 

to Snippy. Each point indicates the median F-score for the genome of one strain per species 893 

(n = 254 strains). Data for Snippy is plotted on the x-axis, and for the named pipeline on the 894 

y-axis. Raw data for this figure is given in Supplementary Table 6. Text in the top left of each 895 

figure is an interpretation of the difference between each pair of distributions, obtained using 896 

the R package ‘effsize’ which applies the non-parametric effect size estimator Cliff’s delta to 897 

the results of a Mann Whitney U test. 898 

 899 

Supplementary Figure 5. Selection of E. coli isolates by manual review of dendrogram 900 

topology. 901 

There are numerous usable complete genomes for E. coli. For the SNP calling evaluation, a 902 

subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 903 

clades represented. To do so, an all-against-all distance matrix for each genome was created 904 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 905 

neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 906 

are given in Supplementary Table 2. 907 

 908 

Supplementary Figure 6. Selection of K. pneumoniae isolates by manual review of 909 

dendrogram topology. 910 

There are numerous usable complete genomes for K. pneumoniae. For the SNP calling 911 

evaluation, a subset of isolates was selected (indicated in red boxes) so as to maximise the 912 



28 
 

diversity of clades represented. To do so, an all-against-all distance matrix for each genome 913 

was created using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed 914 

using the neighbour joining method implemented in MEGA v7.0.14. Sources for the selected 915 

genomes are given in Supplementary Table 2. 916 

 917 

Supplementary Figure 7. Selection of L. monocytogenes isolates by manual review of 918 

dendrogram topology. 919 

There are numerous usable complete genomes for L. monocytogenes. For the SNP calling 920 

evaluation, a subset of isolates was selected (indicated in red boxes) so as to maximise the 921 

diversity of clades represented. To do so, an all-against-all distance matrix for each genome 922 

was created using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed 923 

using the neighbour joining method implemented in MEGA v7.0.14. Sources for the selected 924 

genomes are given in Supplementary Table 2. 925 

 926 

Supplementary Figure 8. Selection of S. enterica isolates by manual review of 927 

dendrogram topology. 928 

There are numerous usable complete genomes for S. enterica. For the SNP calling evaluation, 929 

a subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 930 

clades represented. To do so, an all-against-all distance matrix for each genome was created 931 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 932 

neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 933 

are given in Supplementary Table 2. 934 

 935 

Supplementary Figure 9. Selection of S. aureus isolates by manual review of 936 

dendrogram topology. 937 

There are numerous usable complete genomes for S. aureus. For the SNP calling evaluation, 938 

a subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 939 

clades represented. To do so, an all-against-all distance matrix for each genome was created 940 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 941 

neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 942 

are given in Supplementary Table 2. 943 

 944 

Supplementary Datasets 945 

 946 
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Supplementary Dataset 1. Simulated datasets for evaluating bacterial SNP calling 947 

pipelines. 948 

This archive contains the set of 254 SNP-containing genomes, VCFs containing the nucmer 949 

and Parsnp strain-to-representative genome SNP calls, and the final truth sets of SNPs used 950 

for evaluation. 951 
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Table 1. Summary of pipeline performance across all species' genomes.

Recall (sensitivity)

No. of true positive calls

No. of false positive calls

No. of false negative calls

Total no. of errors (FP + FN calls) per million sequenced bases

Sum of ranks for all previous measures

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Performance measure

Precision (specificity)

F-score
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Table 1. Summary of pipeline performance across all species' genomes.

bwa-mem/novoalign/stampy with gatk (0.989)

novoalign/gatk (15,777)

stampy with mpileup/platypus (0.000)

novoalign/gatk (0.941)

novoalign/gatk (0.944)

novoalign/gatk (10)

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (when the reference genome 

is the same as the source of the reads)

snippy, bwa-mem/minimap2/novoalign/stampy with 

16GT/freebayes/gatk/lofreq/mpileup/platypus/snver

/strelka/varscan (1.000)

bwa-mem with freebayes/gatk, minimap2 with 

freebayes/gatk, novoalign/gatk, stampy/gatk (0.994)



bwa-mem with 16GT/freebayes, stampy/freebayes (0.997)

bwa-mem/freebayes (13,829)

novoalign/snvsniffer (1.825)

bwa-mem/freebayes (0.188)

snippy (2.627) *

snippy (20) *

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (when the reference genome is divergent 

from the reads)

novoalign/snvsniffer (0.971)

snippy (0.982) *



bwa-mem/minimap2/stampy with freebayes (0.992)

bwa-mem/freebayes (14,791)

novoalign/snvsniffer (0.913)

bwa-mem/freebayes (0.641)

snippy (2.125)

novoalign/mpileup (42)

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (averaged across all simulations)

novoalign/snvsniffer (0.986)

novoalign with lofreq/mpileup, snippy (0.986)



Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.



Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.



Table 2. Overall performance of each pipeline per species, calculated as the sum of seven ranks, when reads are aligned to a divergent genome.

snippy * 2 1 1 1

novoalign/lofreq 1 2 3 10

novoalign/mpileup 3 3 4 9

novoalign/16GT 5 5 6 8

novoalign/snver 4 4 5 12

minimap2/mpileup 10 6 2 20

novoalign/strelka 6 9 13 7

bwa-mem/mpileup 12 14 15 2

minimap2/strelka 8 11 10 21

bwa-mem/snver 9 10 11 5

minimap2/lofreq 20 8 7 18

novoalign/freebayes 7 13 12 14

bwa-mem/16GT 22 18 20 6

bwa-mem/strelka 16 25 22 4

bwa-mem/lofreq 18 16 19 3

minimap2/freebayes 14 12 9 15

minimap2/16GT 21 15 14 16

minimap2/snver 11 7 8 25

bwa-mem/freebayes * 15 17 16 13

novoalign/varscan 13 19 17 17

bwa-mem/varscan 17 24 21 11

bwa-mem/platypus 31 23 25 19

stampy/strelka 24 27 27 22

minimap2/varscan 19 21 18 29

novoalign/platypus 29 20 23 23

minimap2/platypus 23 22 24 34

stampy/freebayes 26 26 26 24

bwa-mem/gatk 27 28 32 26

stampy/mpileup 36 32 29 28

novoalign/gatk 28 29 31 27

stampy/lofreq 37 33 30 30

minimap2/gatk 25 31 33 33

stampy/gatk 34 34 35 31

stampy/platypus 38 35 39 35

novoalign/snvsniffer 33 30 28 32

stampy/snver 30 39 34 41

bwa-mem/snvsniffer 32 36 36 38

stampy/16GT 40 38 37 37

stampy/varscan 41 40 38 39

minimap2/snvsniffer 35 37 40 40

stampy/snvsniffer 39 41 41 36

* Snippy is based upon a BWA-mem/freebayes pipeline but under default parameters, shows improved performance.

Pipeline
Clostridiodes 

difficile

Escherichia 

coli

Klebsiella 

pneumoniae

Listeria 

monocytogenes
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Table 2. Overall performance of each pipeline per species, calculated as the sum of seven ranks, when reads are aligned to a divergent genome.

5 1 1 2 1 1

3 4 2 1 3 2

2 10 5 4 2 3

8 12 3 18 6 6

12 14 4 14 4 10

9 13 9 9 7 15

13 27 8 11 11 4

7 8 19 17 8 9

15 6 11 12 10 7

21 2 10 21 14 12

10 17 18 3 9 14

1 22 6 24 18 17

19 15 17 5 13 8

16 5 26 7 17 5

11 20 24 19 5 11

4 25 7 23 19 18

18 18 16 6 12 13

22 3 12 26 15 22

6 19 13 16 21 16

20 16 15 13 16 21

30 9 23 29 23 23

36 7 22 10 24 20

25 11 32 15 20 19

32 26 21 31 22 25

28 32 14 25 30 27

34 21 20 22 25 29

33 30 29 30 26 24

26 31 28 28 27 26

14 23 35 27 31 30

23 34 25 34 28 31

17 29 37 20 32 32

24 35 27 35 34 28

27 37 30 32 33 34

37 24 33 8 41 39

38 33 31 38 36 33

29 28 40 37 38 35

39 39 34 39 29 38

35 36 39 33 39 36

31 38 41 36 40 37

40 40 36 40 35 40

41 41 38 41 37 41

* Snippy is based upon a BWA-mem/freebayes pipeline but under default parameters, shows improved performance.

Mycobacterium 

tuberculosis

Neisseria 

gonorrhoea

Salmonella 

enterica

Shigella 

dysenteriae

Staphylococcus 

aureus

Streptococcus 

pneumoniae



16 4

31 9
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77 15
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